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Phenotypic correlates of the working dog microbiome
Hillary A. Craddock 1,4, Anastasia Godneva2,4, Daphna Rothschild 2, Yair Motro 1, Dan Grinstein1, Yuval Lotem-Michaeli1,
Tamar Narkiss3, Eran Segal2 and Jacob Moran-Gilad1✉

Dogs have a key role in law enforcement and military work, and research with the goal of improving working dog performance is
ongoing. While there have been intriguing studies from lab animal models showing a potential connection between the gut
microbiome and behavior or mental health there is a dearth of studies investigating the microbiome-behavior relationship in
working dogs. The overall objective of this study was to characterize the microbiota of working dogs and to determine if the
composition of the microbiota is associated with behavioral and performance outcomes. Freshly passed stools from each working
canine (Total n= 134) were collected and subject to shotgun metagenomic sequencing using Illumina technology. Behavior,
performance, and demographic metadata were collected. Descriptive statistics and prediction models of behavioral/phenotypic
outcomes using gradient boosting classification based on Xgboost were used to study associations between the microbiome and
outcomes. Regarding machine learning methodology, only microbiome features were used for training and predictors were
estimated in cross-validation. Microbiome markers were statistically associated with motivation, aggression, cowardice/hesitation,
sociability, obedience to one trainer vs many, and body condition score (BCS). When prediction models were developed based on
machine learning, moderate predictive power was observed for motivation, sociability, and gastrointestinal issues. Findings from
this study suggest potential gut microbiome markers of performance and could potentially advance care for working canines.
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INTRODUCTION
Dogs have a key role in law enforcement and military work, and
research with the goal of improving working dog performance is
ongoing. While there have been intriguing studies from lab animal
models showing a potential connection between the gut
microbiome and behavior or mental health, implicating the so-
called “gut-brain axis”1,2, there is a dearth of studies investigating
the microbiome-behavior relationship in working dogs. Some
recent small-scale studies in non-working dogs have found that
undesirable canine behaviors (i.e., aggression, anxiety) are
associated with certain characteristics of the canine gut micro-
biome3,4. However, it is critical to note when thinking about the
microbiome’s impact on behavior that the behavioral traits of
working dogs and companion dogs have critical differences5.
Thus, focusing on working dogs is important for understanding
potential microbiome-behavior connections as it pertains to job
performance and potentially modulating the microbiome to
influence performance outcomes.
Significant efforts have been made to characterize the canine

microbiome of companion animals and lab animals in both health
and disease6–23. Dominant phyla include Firmicutes, Proteobacteria,
Fusobacteria, Bacteroides, and Actinobacteria, however, abundan-
cies and the most prevalent of these phyla differ among
studies8,16,19,24,25. Canine microbiome dysbiosis has been observed
in conditions including inflammatory bowel disease, acute
diarrhea, skin and ear infection, and obesity6,7,10,13,15,17,18,20–23,26,27.
Despite these efforts to characterize the canine microbiome,

there are strikingly few studies investigating the impact of the
microbiome on canine performance in general and working dog
performance in particular. One review article postulated that there
could be a connection between the gut microbiome and olfaction
performance for scent-detection dogs28, and one study observed

small differences in nasal and oral microbiota among different
types of scent-detection dogs29. Two pilot studies investigating
the impact of the stress of helicopter and flight travel on the
performance and microbiome of United States Federal Emergency
Management Agency search and rescue (SAR) dogs found a
difference in microbiome after plane travel but not helicopter
travel30,31.
Furthermore, current research is limited regarding the canine

microbiota and has for the most part utilized 16S rRNA amplicon
sequencing, and studies regarding the microbiome of working
canines as well as microbiome-behavior connections have had
small sample sizes28–31. Furthermore, even in the heavily-studied
human gut there are still unknowns regarding the composition
and functionality of the microbiome32,33, and this knowledge gap
is wider in the relatively understudied microbiome of large
mammals such as canines.
The overall objective of this study was to characterize the

microbiota of working dogs across a sample of 134 working dogs
representing diversity with respect to age, sex, breed, job, and
behavioral traits, and to determine if the composition of the
microbiota are associated with behavioral and performance
outcomes. By harnessing whole genome metagenomic methods
and predictive modeling, we sought to comprehensively char-
acterize the working canine microbiota and its potential impact on
behavior and performance.

RESULTS
Quantitative phenotypes description
The age range of sampled dogs was 0.5–12 years (mean 3.8 years,
median 3.4 years), and slightly over half were females (53.4%). BCS
ranged from 4 to 6.5 on a scale of 1–9 (mean 4.95, median 5). The
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most common breed was Malinois at 43.5%, followed by non-
Malinois Belgian and Dutch shepherds at 18.5%. In respect to
dog’s job assignments 29.5% were tracking dogs and 18.8% were
breeding dogs, followed by scent detection, bite work, and SAR
dogs (14.7, 13.3, and 12.3% respectively). Job differed by breed
(p= 0.0005) and sex (p= 0.003). Some demographic variables
varied between cohorts, notably breed (p < 0.0001) and job
(p < 0.0001). For example, the most common breed in both
cohorts was the Belgian Malinois (Cohort 1–50%, Cohort 2–29.7%);
however the second most common breed in the first cohort was
non-Malinois Belgian and Dutch Shepherds (31.9%), and the
second most-common breed in the second cohort was the
German Shepherd (26.6%). The most common jobs in the first
cohort were tracking (48.6%) followed by scent detection (13.9%);
the most common jobs in the second cohort were breeding
(32.8%) followed by SAR and bite work (both 20.3% of the cohort).
There were 9 dogs who received a special diet (hypoallergenic
food), 4 were treated with proton pump inhibitors, and 18 from
cohort 1 had received antibiotics between 1 month and 1 year
prior to sample collection. Further demographic information is
depicted in Table 1. Overall, Bacteroides and Firmicutes were the
most commonly observed phyla; in Cohort 1 Bacteroides were
more abundant than Firmicutes and in Cohort 2 Firmicutes were

observed to be more abundant than Bacteroides (Fig. S1 and Table
S1). Principle coordinates analysis (PCoA) plots detailing beta
diversity by year, breed, and year, and job and year are presented
in Fig. S2.
Differences in microbiome markers among demographic

groups, including diet, age, sterilization status, breed, job, and if
the dog had recurrent gastrointestinal (GI) issues, are presented in
Figs. 1–5, S3–S4. For example, number of species as well as
diversity were higher in dogs that had not been sterilized than
dogs that had been sterilized (Fig. 2) and differed among different
job groups (Fig. 4). Dogs with recurrent GI problems had a lower
richness and lower abundance of Butyrate producing species than
dogs without recurrent GI problems (Fig. 5). No significant
relationships were observed between microbiome markers and
sex.
Overall scores on phenotypic outcomes including obedience,

obedience specificity (the dog’s ability to be obedient to only one
vs several trainers), motivation/drive, aggression, cowardice/

Table 1. Demographics of sampled working canines (Total n= 134).

Demographic characteristics

Sex Female % 53.4

Male % 46.6

Puppy/adult Puppy % 11.8

Adult % 88.2

Sterilized No % 88.7

Yes % 11.3

Chronic GI issues Yes % 10.3

No % 89.7

Breed Malinois % 43.5

Belgian/Dutch Shepherd % 18.5

Corgi % 9.7

GSD % 12.9

Labrador % 6.4

Other % 8.9

Job Bite work % 13.1

Breeding % 18.8

Search and Rescue % 12.3

Scent detection % 14.7

Tracking % 29.5

Failed % 11.5

Body condition score (scale) Median 5 Range (4–6.5) StDev 0.6

Age (years) Mean 3.8 Range (0.5–12) StDev 2.4

Behavioral and performance characteristics

Median (range) StDev

Obedience 4 (2–5) 0.9

Obedience (specific) 5 (1–5) 1

Motivation 4 (2–5) 0.8

Aggression 1 (1–5) 1.1

Cowardice 2 (1–4) 0.8

Sociability 5 (2–5) 0.8

Stress level 2 (1–4) 0.9

Job performance 4 (1–5) 0.8

Fig. 1 Relative abundance of microbiome features that differed
by the age group (adult (A) vs puppy (P)) of working canines and
are statistically significant (only associations significant via
Mann–Whitney test, p < 0.05, are included). Error bars represent
confidence intervals.

Fig. 2 Relative value of microbiome features that differed by the
sterilization status (Dog was spayed/neutered or not) of the dog
and are statistically significant (only associations significant via
by Mann–Whitney test, p < 0.05, are included). A Reflects differ-
ential value of richness and diversity, and B reflects relative
abundance. Error bars represent confidence intervals.
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hesitation, physical size, sociability, stress level, and job perfor-
mance are presented in Table 1 and Fig. S5. Correlations among
different demographic and phenotypic data were observed, for
example, behaviors like obedience were positively correlated with
job performance and motivation, whereas aggression was
negatively correlated with sociability. Increased age was asso-
ciated with increased cowardice score and increased motivation
score (Fig. 6). Statistically, obedience (p < 0.0001), motivation
(p < 0.0001), cowardice (p < 0.0001), sociability (p < 0.0001), obedi-
ence specificity (p < 0.0001), and aggression (p < 0.0001) scores
differed based on job. Regarding specific observed trends,
tracking had the largest proportion of dogs in higher obedience
categories while SAR had the lowest proportion of dogs with a
high score for obedience (specificity) category (i.e., SAR dogs had a
lower proportion of dogs exhibiting obedience to only one
trainer). Bite work, scent detection, and tracking had the highest
proportions of dogs in high motivation categories. Bite work dogs
had the highest proportion of dogs in high aggression categories

whereas tracking had the lowest proportion of dogs in high
aggression categories. SAR and scent detection had the highest
proportion of dogs in the low cowardice score categories (i.e.,
these breeds had the highest proportion of dogs exhibiting
minimal or no cowardice or hesitation). Tracking had the highest
proportion of dogs in high sociability categories, whereas SAR had
the lowest proportion of dogs in high sociability categories.
Cowardice (p= 0.003), obedience specificity (p= 0.047), aggres-
sion (p= 0.003) and stress level (p= 0.01) scores differed based on
breed. Regarding specific observed trends, Malinois and non-
Malinois Dutch shepherds had higher proportions of dogs in high
motivation categories. Malinois, non-Malinois Dutch shepherds,
and corgis had higher proportions of dogs in high obedience
categories. German shepherds, followed by Malinois and non-
Malinois Dutch shepherds had the highest proportion of dogs in
high aggression categories. Labradors and non-Malinois Dutch
shepherds had the highest proportion of dogs in high sociability
categories. A heatmap demonstrating the interactions among

Fig. 4 Relative value of microbiome features that differed by canine job group and are statistically significant (Only associations
significant via by Kruskal test, p < 0.05, are included). A Reflects differential value of richness and diversity, and B reflects relative abundance.
Error bars represent confidence intervals. *SAR Search and Rescue. **Failed = Dogs that failed out of job training or failed to be assigned to
job training.

Fig. 3 Relative value of microbiome features that differed by canine breed group and are statistically significant (only associations
significant via by Kruskal test, p < 0.05, are included). A Reflects differential value of richness and diversity, and B reflects relative abundance.
Error bars represent confidence intervals. *GSD German Shepherd Dog.
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microbiome markers, phenotypic outcomes, and cohort appears in
Fig. S4, and tables demonstrating associations between breed and
behavioral outcome and job and behavioral outcome appears in
Supplemental Table 2.

Microbiome features vs quantitative phenotypes
When observing the correlation among microbiome features and
canine demographic and phenotype data, some relationships
were observed. Increased BCS was negatively associated with

Fig. 5 Relative value of microbiome features that differed by if the dog had recurrent gastrointestinal (GI) illness or not (only
associations significant via Mann–Whitney test, p < 0.05 are included). A Reflects differential value of richness, and B reflects relative
abundance. Error bars represent confidence intervals.

Fig. 6 Heatmap depicting correlation among canine demographic and phenotypic data via Pearson's correlation. Only values after false
discovery rate (FDR) correction (level = 0.15) are presented in this figure. *BCS Body Condition Score.
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Faecalibacterium prausnitzii abundance and richness (Fig. 7),
positively associated with Bacteroides, Fusobacteriaceae, Lachnos-
piraceae, and Megamonas abundance (Figs. 8, S6), and negatively
associated with Catenibacterium, Collinsella, Eggerthellaceae, and
Firmicutes abundance (Figs. 8, S6). Both positive and negative
associations were observed between increased BCS and abun-
dance of Prevotella (Figs. 8, S6). Increased BCS was also negatively
associated with Eubacterium abundance (Fig. S6) and positively
associated with Selenomonadaceae abundance (Fig. S7).
Increased motivation score was negatively associated with

Faecalibacterium prausnitzii and Eubacterium abundance (Fig. 7).
Increased motivation score was positively associated with
Prevotella abundance (Figs. S6 and S7) and negatively associated
with Firmicutes abundance (Fig. S6).
Increased cowardice score was negatively associated with

Faecalibacterium prausnitzii abundance, Roseburia abundance,
Eubacterium abundance, richness, and Shannon diversity (Fig. 7).
Increased cowardice score was positively associated with butyrate-
producing species (Fig. 7), acetate-producing species (Fig. 7), and
Lactobacillaceae abundance (Fig. S7). Increased sociability scores
were negatively associated with richness, abundance of butyrate-
producing species, and abundance of acetate-producing species

(Fig. 7). Increased sociability score was positively associated with
Lachnospiraceae and Bacteriodes abundance (Figs. 8, S6) and
negatively associated with Dorea and Eggerthellaceae abudance
(Fig. S6). Increased aggression scores were positively associated
with increased richness and Shannon diversity (Fig. 7), Balutia
abundance (Fig. 8), Bradyrhizobium abundance (Figs. 8, S6), and
Ruminococcaceae abundance (Fig. S7). Increased aggression score
was negatively associated with Lachnospiraceae (Figs. 8, S6) and
Selenomonadaceae abundance (Fig. S7). Increased obedience
specificity scores were negatively associated with richness
(Fig. 7) and Clostridium perfringens abundance (Fig. 8).

Prediction of behavioral features from the microbiome
For each dog characteristics such as obedience, aggression, etc.
we divided our cohort into two groups with more and less
exhibited characteristics. Grouping was accomplished by both
observing the distribution of scores and discussing the perfor-
mance and real-world implications of scores with dog trainers
from the organization (Individual grouping modalities are
described in Fig. 9). Then we explored the prediction from
microbiome features and species abundances in order to

Fig. 7 Heatmap depicting correlation among microbiome features and canine demographic and phenotypic data. A Microbiome features
including richness and diversity. B Specific microbial group. Only values significant after false discovery rate (FDR) correction (level = 0.15) are
presented in this figure. BCS body condition score.
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determine to which group the sample belongs (Fig. 9). The results
are shown as a mean and std of 5-fold cross-correlation accuracy.
Overall, 13 microbiome features and 424 species abundances
were used. Motivation, sociability, and GI issues showed the best
separation and therefore suggest moderate predictive capability,
and motivation and sociability had moderate separation and
therefore mild to moderate predictive capability. Job performance
and stress levels had the least accurate models and therefore did
not show predictive capability. This suggests that there are
microbiome signatures associated with certain traits in the
observed dogs.

DISCUSSION
The overall observed abundancies were as expected, with
Firmicutes and Bacteroides dominating24,34. Among the population
as a whole, differences were observed in the microbiome by
factors such as diet, adult/puppy status, sterilization status, breed,
job, chronic GI problems, and BCS. This agrees with the literature,
as studies have noted differences based on sterilization status25,
breed-based differences34,35, working dog job29, GI disease21,22,34,
diet24,34, and age36. Specific associations observed in this study
also agree with the findings in the literature. For example,
Scarsella et al. (2020) noted that the microbiome of sterilized dogs
was less diverse than non-sterilized dogs, which agrees with our

findings. However, it bears noting that most dogs with recurrent
GI issues were also being fed the hypoallergenic diet so it is
possible that these microbiome features are due to the influences
of diet as well as GI disease (Fig. S3).
Microbiome markers were also statistically associated with

motivation, aggression, cowardice, sociability, and obedience to
one trainer vs many, and some of these associations agree with
findings in previous studies3,4,28. When prediction models were
developed with machine learning, the best models were for
motivation, sociability, and GI issues, whereas the models that did
not show predictive capability were for job performance and
stress levels.
Regarding correlations between microbiome markers and

behavior, some agreement with the literature was observed. We
observed that increased abundance of Firmicutes was associated
with increased aggression, which is in line with findings from
Kichoff et al. (2019). Mondo et al. (2019) also observed that
increased richness was associated with increased aggression and
increased Lactobacillus was associated with increase cowardice/
phobic behavior, which both agree with our findings. Interestingly
our study identified increased Ruminococcus abundance was
associated with increased aggression but not cowardice, whereas
Mondo et al. (2019) observed it was associated with fearful or
phobic behavior. As with Isaiah et al. (2017) higher or lower taxa
abundances were associated with different canine jobs, however

Fig. 8 Heatmap depicting correlation among bacterial families and canine demographic and phenotypic data. Only values significant
after false discovery rate (FDR) correction (level = 0.05) are presented in this figure. *BCS Body Condition Score.

Fig. 9 Association of phenotypic working canine characteristics with microbiome features. Classification of phenotypic characteristics was
based on working canine microbiome characteristics including obedience (A), obedience to one trainer vs many trainers (specificity, B),
motivation (C), aggression (D), cowardice/hesitation (E), sociability (F), job performance (G), recurrent gastrointestinal (GI) issues (H), and stress
level (I).
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the taxa observed to be significant were different between our
study and theirs. Nevertheless, these differences may be due to
geographic location (Israel vs the United States of America) and
Isaiah et al. (2017) focusing on specific subcategories within scent
detection dogs vs our study which had more general groupings of
a wider diversity of jobs. Finally, the ability of machine learning
algorithms to predict some of these traits in samples that were
held-out during the training attests to the robustness of our
results.
While further research is needed to establish relationships

between the canine microbiome and health, behavior, and job
performance, the findings of this and previous studies strongly
suggest that there is a relationship between these factors. Current
studies have investigated the relationships between probiotic
supplementation and diet and the canine microbiome, and
outcomes of these studies combined with the findings of our
study are intriguing regarding future directions for canine
supplementation and dietary interventions. For example, a recent
study noted that supplementing dog’s feed with probiotics
resulted in positive health outcomes (including reduction of
chronic diarrhea) as well as measurable shifts in numerous gut
microbiome features (i.e., increase in richness, reduction in
Escherichia spp.)37. Some of these features (i.e., richness, Blautia
abundance, Lactobacillus abundance) were associated with health
and behavioral outcomes in our study, and the fact that the
microbiome shifts observed by Xu et al. (2019) were especially
pronounced in elderly dogs may indicate a way to extend a dog’s
healthy working years. Two other recent studies comparing dogs
fed different kinds of diets noted that diet also influenced
microbiome features found in our study to be associated with
health and behavioral outcomes (i.e., Prevotella, Faecalibacterium,
Eubacterium, and Blautia abundance)25,38. These concordant
findings provide ample material for further longitudinal research
on the effect of diet and supplementation on canine health,
behavior, and performance.
Key limitations of this study are the fact that this would be

considered a fairly small database for machine learning and the
dogs are a non-homogenous population (i.e., diverse selection of
jobs, ages, and breeds), ergo certain associations may have been
masked or amplified based on these factors. Furthermore, the
diversity of jobs directly impacts the desirability of specific traits.
For example, an aggressive patrol or guard dog is desirable,
whereas an aggressive SAR dog is not. Certain breeds, for
example, Belgian Malinois, are frequently categorized as having
high stress levels, and this is desirable because it translates to high
drive and high performance, however high stress in a Labrador
Retriever would be classified as undesirable. However, despite
these factors, microbiome associations were observed between
certain characteristics regardless of their desirability in that
particular dog. Furthermore, a significant batch effect was
observed between the two cohorts. This beta diversity difference
between cohorts is potentially due to differences in breed
composition by year and job by year. We have investigated the
data using numerous methodologies, however, a much larger
dataset would be needed to conduct multivariate statistical
analysis to completely overcome this batch effect and confirm the
effect of breed and job over cohort. Additionally, dogs with more
than one month elapsing after antimicrobial administration were
sampled, thus it is possible some lingering effects of antimicrobial
administration were present in microbiome composition.
Another notable limitation is the use of an internally-relevant

scale instead of an externally-validated scale. Externally-validated
scales are available and could enhance future research39,40.
However, given the variation observed in externally-validated
scales41, the use of an internally-used scale that is well-known to
the people collecting the data versus a novel-but-externally-
validated scale could potentially reduce variation between
cohorts42.

While the findings of this study point towards associations with
certain microbiome features and working dog characteristics,
more research is needed on this topic. For example, longitudinal
research could pinpoint if microbiome shifts come before or after
behavioral traits such as aggression, obedience, etc. More focused
studies on one job type and/or otherwise more homogenous
groups of working canines would also elucidate relationships and
allow for multivariate analyses to further determine the relation-
ships among microbiome markers and various demographic and
phenotypic outcomes. As companion and working dogs are
behaviorally different in terms of what is considered desirable
behavior, further research should also target companion dogs.
Longitudinal and job-focused studies could also allow for
supplementation of pre- and pro-biotics in an attempt to ascertain
if shifts in the microbiome would result in performance shifts.
Importantly, our results point to specific bacterial species that
associate with certain traits and thus raise concrete testable
hypotheses for interventional experiments that may establish
causal relationships and avenues for improving canine perfor-
mance. Furthermore, for machine learning algorithms this is
considered a small dataset, ergo larger studies are needed in the
future to rule out batch effects.
Working canines in military and law enforcement are critical for

the prevention of domestic and international criminal or terrorist
acts. Their training is laborious, costly, and sometimes unsuccess-
ful despite best efforts and all known research regarding behavior
and diet. Current research has barely scratched the surface of how
microbiome composition could impact performance and behavior
in canines. Research findings from this study suggest potential
microbiome markers for performance, and such could potentially
greatly advance care for working canines. Future research should
focus on the identified taxa to establish their potential as either
markers of phenotypic outcomes or potentially physiological
aspects that could be modulated to improve performance.

METHODS
Working canines (Total n= 134) from an Israeli working dog program were
studied in two cohorts. Cohort 1 (n= 71) data were collected May–June
2018, and Cohort 2 (n= 63) data were collected September–December
2019. Freshly passed stools from each canine were collected using Eswabs
(Copan Diagnostics, Brescia, Italy). Samples were collected from the
concrete floor of regularly-cleaned individual kennels, thus reducing the
risk of soil contamination. Samples were not collected from dogs that had
received antibiotics in the preceding four weeks. Samples were frozen
within a short timeframe (minutes to hours) until transport to the
laboratory, and kept at −80° C until processing43. Genomic DNA was
extracted using the PowerMicrobial/PowerSoil DNA kits (Qiagen, Hilden,
Germany). Metadata were collected including basic demographic informa-
tion (age, sex, body condition score (BCS), sterilization status, operational
job, living conditions, and breed) and factors that are known to influence
microbiota composition in canines (antibiotic and proton pump inhibitor
(PPI) administration history, diet, history of gastrointestinal disorders).
Antibiotic and PPI administration data were not available for cohort 2. BCS
was assessed according to the American Animal Hospital Association
scale44. Behavior and performance metadata (8 parameters on a scale of
1–5) were collected following assessment by dog trainers and in house
veterinarians with expertize in canine behavior and work performance.
These behavior and performance variables included Motivation (Dog’s
drive to learn and complete tasks. Scale of 1 (no motivation, risk of failure)
to 5 (highly motivated)), Aggression (Dog’s tendency to respond to
stimulus (cue/command or without cue/command) with biting. Scale of 1
(no aggression, does not bite) to 5 (highly aggressive, likely to bite even
when not cued/commanded)), Cowardice/hesitation (Dog’s hesitation or
fearfulness regarding new or stimulating situations. Scale of 1 (no or
almost no hesitation or fearfulness) to 5 (very hesitant, risk of failure)),
Sociability (Dog’s social habits with other dogs. 1 = incapable of socializing
with other dogs, 2 = some sociability, 3 = average sociability, can be alone
or in groups, 4 = greater than average sociability, 5 = high sociability,
needs group living scenario), Obedience, General (Dog’s general capability
to be obedient to commands and training cues in multiple scenarios and
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situations. Scale of 1 (not obedient, risk of failure) to 5 (Excellent example
of obedience)), Obedience specificity to one trainer vs many (Dog is
obedient to any trainer using appropriate commands or cues (Score of 5),
several trainers but not any trainer using appropriate commands and cues
(Score of 3), or only one trainer using appropriate commands and cues
(Score of 1)), Stress levels (How stressed/high strung dogs are in both day-
to-day scenarios as well as job performance scenarios. Very low stress
levels = 1, Not very low stress or not stressed only in some scenarios = 2,
average stress levels = 3, Not very high stress/highly stressed in some
scenarios = 4, Very stressed in all scenarios = 5), and Job performance
(Scale of 1 (bad at assigned job, risk of failure) to 5 (Excellent example of
canine performance in assigned job)).
Whole genome sequencing was performed using the Illumina NextSeq

500 platform (Illumina, San Diego, CA). For metagenome analysis,
metagenomic reads containing Illumina adapters and low-quality reads
were filtered with trimming of low-quality read edges. Host DNA was
detected by mapping with bowtie to the Canis lupus familiaris genome45

with inclusive parameters, and host reads were removed. We subsampled
to 10 million reads. Relative abundances from metagenomic sequencing
were computed using our developed relative abundance estimation as
described below. Relative abundances were capped at a level of 10−4.
The bacterial reference dataset for relative abundance estimation was

based on the representative assembly of the species-level genome bins
(SGBs) and genus-level genome bins (GGBs) defined by Pasolli et al.46.
Human SGBs were utilized for this stage of analysis; out of the 4930 human
SGBs (associated with various body sites), 3127 SGBs were used, which
were characterized by either belonging to a unique genus or with at least 5
assemblies to justify having a new SGB. We employed this restriction, since
we noticed that the cutoff threshold used by Pasolli et al. to cluster
assemblies into SGBs, resulted in the artificial splitting of small groups with
little nucleotide difference from a large nearby SGB. Abundance was
calculated by counting reads that best match to a single SGB. Bowtie247

was used to map samples from our cohort versus an index built from
representatives of the SGBs. When analyzing the mapping, we focused on
reads for which the best map is unique (thus mapped to a location which is
unique in the index of representatives). We counted the number of reads
uniquely mapped to each window of each SGB. The cover estimation for
each SGB is the dense mean cover of its representative48, normalized by
the genome size. The relative abundance estimation is the cover divided
by the sum of the covers of all representatives concluded to exist in this
sample. The microbiome features of butyrate-producing species were
calculated by taking the sum of the abundances of butyrate-producing
bacteria based on the literature (24 bacteria species total)49. The
microbiome feature of Firmicute/Bacteroides ratio was calculated by
dividing the sum of bacteria abundances from the phylum Firmicutes by
the sum of bacteria abundances from the phylum Bacteroides.
For descriptive statistics and overall evaluation of beta diversity features,

R (Version 4.0.2) was used with the following packages: tidyverse, dplyr,
phyloseq, data.table, devtools, microbiomeutilities, readr, ggplot2, and
psych. Chi squared and fisher’s exact tests were used to evaluate
demographic trends as well as correlations between phenotypic/beha-
vioral outcomes and demographic inputs.
To evaluate the discriminative power of the microbiome composition, we

constructed a prediction model of behavioral/phenotypic outcomes using
gradient boosting classification which takes the microbiome features as
inputs for (feature) based on Xgboost50. Young dogs that would not have yet
reached emotional and behavioral maturity (<1 year of age) were not
included in this analysis. The mean and standard deviation of the area under
the receiver operating characteristic (ROC AUC) curve were computed by
using the curves that were generated in 3-fold cross-validation. The following
python (v 3.7.2) libraries were used for statistics (scipy ‘1.5.4’), visualization
(seaborn 0.11.0), and prediction (xgboost 1.3.0). Specifically, regarding
comparisons of microbiome features and phenotypic/behavioral outcomes,
Kruskal–Wallis and Mann–Whitney tests were used. Pearson correlation was
used to compare between two numerical features and Bonferroni correction
was applied when testing multiple hypotheses (on the level of 0.15).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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